> [!summary] Displacement describes an object's motion over an interval > **Key Equations:** > Displacement: $\Delta x = x(t_{2})-x(t_{1})$ >[!info]+ Read Time **⏱ 1 min** # Definition Displacement describes an object's motion over an interval. It's a vector quantity and can be positive or negative. Mathematically, displacement is described as a function $x(t)$ or described as the change over an interval $ \begin{array}{c} \text{Displacment (1D)} = x(t_{2})-x(t_{1}) \\ \\ \text{Or as a form as velocity:} \\ \vec{d} = \int_{a}^b \vec{v(t)}dt \end{array} $ # Resources <iframe width="560" height="315" src="https://www.youtube.com/embed/w_A_WHXWMU8?si=J-_xmWbrM80kYgfd&amp;start=683" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" referrerpolicy="strict-origin-when-cross-origin" allowfullscreen></iframe> --- <!-- Light Mode Newsletter Embed --> <div class="mm-form-light"> <iframe src="https://updates.cyberleadhub.com/widget/form/Y0kpQVpjJQuxEfX59m17" id="inline-Y0kpQVpjJQuxEfX59m17" title="Join Math & Matter Newsletter (Light)" data-height="900" scrolling="no" allowtransparency="true" loading="lazy" style="width:100%;height:350px;border:none;border-radius:10px;background:transparent;overflow:hidden" ></iframe> </div> <!-- Dark Mode Newsletter Embed --> <div class="mm-form-dark"> <iframe src="https://updates.cyberleadhub.com/widget/form/lbeDLm24VjuaFxhjccA1" id="inline-lbeDLm24VjuaFxhjccA1" title="Join Math & Matter Newsletter (Dark)" data-height="900" scrolling="no" allowtransparency="true" loading="lazy" style="width:100%;height:350px;border:none;border-radius:10px;background:transparent;overflow:hidden" ></iframe> </div> <!-- Provider script (only once) --> <script src="https://updates.cyberleadhub.com/js/form_embed.js"></script>