> [!summary]
The Impulse momentum theorem relates impulse and momentum
>
**Key Equation:**
>
Impulse-Momentum theorem:
$I = \Delta p$
>[!info]+ Read Time
**⏱ 1 min**
# Definition
The impulse momentum theorem is a theorem that relates [[Impulse|impulse]] and [[Linear Momentum|linear momentum]].
## Derivation
> [!warning] Assumptions
To relate impulse and momentum, assume the following:
> - [[Impulse|Impulse]] is defined as $I = \int_{t_{1}}^{t_{2}}F (t) dt$
> - The [[Instantaneous|instantaneous change]] on [[Linear Momentum|momentum]] can be described by [[Newton Laws|newtons second law]] $F = \frac{dp}{dt}$
$
\begin{array}{c} \\ \\
\begin{align*}
\int_{t_{1}}^{t_{2}} F(t)dt &=\int_{t_{1}}^{t_{2}} \frac{dp}{dt}dt \\
&= \int_{t_{1}}^{t_{2}} dp \\
&= p(t_{2})-p(t_{1}) \\
&= \Delta p
\end{align*}
\\ \\
\text{Therefore:} \\
I = \Delta p
\end{array}
$
# Resources
<iframe width="560" height="315" src="https://www.youtube.com/embed/E13h1E_Pc00?si=icbo6hgh2X6oJt6Z" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" referrerpolicy="strict-origin-when-cross-origin" allowfullscreen></iframe>