> [!summary]
An algebraic proof is a type of proof where you show that LHS = RHS using algebra and manipulation.
>[!info]+ Read Time
**⏱ 1 min**
# Definition
An algebraic proof is a type of proof that relies on algebraic identities and manipulation (factoring, simplifying, [[Greatest Common Divisor (gcd)|greatest common divisors]], etc)to show that expressions are equal (Left hand side = Right hand side).
# Examples
> [!example] Show that $(a+b)^2 = a^2 + 2ab + b^2$
>
> $
\begin{align*}
(a+b)^2 &= (a+b)(a+b) \\
&= a\cdot a +a\cdot b+b\cdot a + b\cdot b \\
&= a^2 + 2ab + b^2
\end{align*}
> $
>
Therefore, using algebraic proof, LS = RS
> [!example] Prove algebraically that the sum of two consecutive integers is always odd.
>
> Let any integer be $n$
Two consecutive integers are $n + n+1$
The sum of these is $2n +1$
This is the identity of a [[Even & Odd Numbers|odd number]]
---
<!-- Light Mode Newsletter Embed -->
<div class="mm-form-light">
<iframe
src="https://updates.cyberleadhub.com/widget/form/Y0kpQVpjJQuxEfX59m17"
id="inline-Y0kpQVpjJQuxEfX59m17"
title="Join Math & Matter Newsletter (Light)"
data-height="900"
scrolling="no"
allowtransparency="true"
loading="lazy"
style="width:100%;height:350px;border:none;border-radius:10px;background:transparent;overflow:hidden"
></iframe>
</div>
<!-- Dark Mode Newsletter Embed -->
<div class="mm-form-dark">
<iframe
src="https://updates.cyberleadhub.com/widget/form/lbeDLm24VjuaFxhjccA1"
id="inline-lbeDLm24VjuaFxhjccA1"
title="Join Math & Matter Newsletter (Dark)"
data-height="900"
scrolling="no"
allowtransparency="true"
loading="lazy"
style="width:100%;height:350px;border:none;border-radius:10px;background:transparent;overflow:hidden"
></iframe>
</div>
<!-- Provider script (only once) -->
<script src="https://updates.cyberleadhub.com/js/form_embed.js"></script>