# Reducing Span When we make a span of discrete vectors, sometimes one or more of those vectors can be scalar multiples of another. > Take, for example, an example from An Introduction To Linear Algebra For Science and Engineering by Norman, D., & Wolczuk, D. The solution is adapted and is my original interpretation of the steps. If we have a span of the below: $ \text{Span} \left\{ \begin{bmatrix} 3 \\ 1 \\ -3 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ 0 \\ -2 \end{bmatrix} \right\} $ Notice that by definition, our [[Vector Equations|vector equation]] is the following: $\vec{x} = c_1\begin{bmatrix} 3 \\ 1 \\ -3 \end{bmatrix} + c_2\begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} + c_3\begin{bmatrix} 3 \\ 0 \\ -2 \end{bmatrix}, \quad c_1,c_2,c_2 \in \mathbb{R} $ Notice that the first two vector equations added together give us the last vector equation, so we can rewrite the [[Vector Equations|vector equation]] as the following (assume $c_1,c_2,c_2 \in \mathbb{R}$ is always true) $\begin{array}{c} \begin{bmatrix} 3 \\ 1 \\ -3 \end{bmatrix} + \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \\ -2 \end{bmatrix} \\ \\ \vec{x} = c_1\begin{bmatrix} 3 \\ 1 \\ -3 \end{bmatrix} + c_2\begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} + c_3\begin{bmatrix} 3 \\ 0 \\ -2 \end{bmatrix} \\ \vec{x} = c_1\begin{bmatrix} 3 \\ 1 \\ -3 \end{bmatrix} + c_2\begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} + c_3 \left\{ \begin{bmatrix} 3 \\ 1 \\ -3 \end{bmatrix} + \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}\right\} \\\\ \vec{x} = (c_1 + c_3 )\begin{bmatrix} 3 \\ 1 \\ -3 \end{bmatrix} + (c_2 +c_3)\begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} \\ \text{Cant simplify futher than this so:} \\ \text{Let $c_1 + c_3 = s$} \\ \text{Let $c_2 + c_3 = t$} \\ \\ \vec{x} = s\begin{bmatrix} 3 \\ 1 \\ -3 \end{bmatrix} + t\begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}, \quad s,t \in \mathbb{R} \end{array}$ ## Generalization From the example above, notice that our vector equation before we simplified it is technically the same as the vector equation after simplifying, because one vector was a scalar multiple of the other. $\begin{array}{c} \text{Some vector $\vec{v_i}$ where $1 \leq i \leq k$ can be written as a linear combination of } \\ \vec{v_1}, \dots, \vec{v}_{i-1}, \vec{v}_{i+1},\dots , \vec{v} _ k\\\\ \text{If and only if:} \\ Span\{\vec{v_1}, \dots, \vec{v_k}\} = Span\{\vec{v_1}, \dots, \vec{v}_{i-1}, \vec{v}_{i+1},\dots , \vec{v} _ k\} \end{array}$ # Examples --- > 🧠 Enjoy this walkthrough? [Support Math & Matter](https://github.com/rajeevphysics/Obsidan-MathMatter) with a star and help others learn more easily. ---