# Proving a Basis
The general requirements for proving basis is argued above (not using math), but proof of this in can be seen as the example below.
>The example below is adapted from a example in An Introduction To Linear Algebra For Science and Engineering by Norman, D., & Wolczuk, D. The solution is adapted and is my original interpretation of steps.
Suppose we had a set x, and we wanted to prove this was a basis of $\mathbb{R^2}$
$C = \left\{ \begin{bmatrix} -1 \\ 2 \end{bmatrix},\begin{bmatrix} 1 \\ 1 \end{bmatrix}
\right\}$
We know since were proving it to be in $\mathbb{R^2}$ it must be contained only two vectors and vectors who are [[Linear Independence & Dependence|linearly independent]].
>[!warning] Assumptions for Checking Span
Assume the [[Span|vector equation]] to be true:
>
$\vec{x} = c_1v_1+ \dots +c_kv_k, \quad ,c_1\dots c_k \in \mathbb{R}$
>
Where we will let $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R^2}$ in order to check if the span $\in \mathbb{R^2}$
$\begin{array}{c}
\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = c_1 \begin{bmatrix} -1 \\ 2 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ \\
\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -c_1 + c_2 \\ 2c_1 + c_2 \end{bmatrix} \\
\\
(1) \quad -c_1 + c_2 = x_1 \\
(2) \quad 2c_1 + c_2 = x_2 \\ \\ \text{Solve for $c_1, c_2$ in terms of $x_1, x_2$ to prove span} \\ \\
(1) - (2) \\
-3c_1 = x_1 - x_2 \\
(3) \quad c_1 = \frac{1}{3}
(x_1 + x_2 ) \\ \\
(3) \Rightarrow (1) \\
c_2 = x_1 + \frac{1}{3}
(x_1 + x_2 ) \\
c_2 = \frac{1}{3}(2x_1 + x_2) \\ \\
\text{Sub $c_1,c_2$ into out vector equation} \\ \\
\frac{1}{3}
(x_1 + x_2 ) \begin{bmatrix} -1 \\ 2 \end{bmatrix} + \frac{1}{3}(2x_1 + x_2) \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}
\\\\
\text{Therefore this spans $\mathbb{R^2}$}
\end{array}$
>[!warning] Assumptions for Linear Independence
To check for [[Linear Independence & Dependence|linear independence]], assume the independence equation:
> - $c_1\vec{v_1} + \dots + c_k \vec{v_k} = \vec{0}$
If the equation is satisfied only when all scalar must be 0 then it is linear independent.
$\begin{array}{c}
\begin{bmatrix} 0 \\ 0 \end{bmatrix} = c_1 \begin{bmatrix} -1 \\ 2 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\
\\
\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -c_1 + c_2 \\ 2c_1 + c_2\end{bmatrix} \\
\\
\text{Expand and solve vector eqations} \\
(1) \quad 0 = -c_1 + c_2 \\
(2) \quad 0 = 2c_1 + c_2 \\
\\ (1) - (2) \\
0 = -3c_1 \\
0 = c_1 \\\\
\text{Its implied that if $c_1 = 0$ then $c_2 =0 $ for it to work in equation (1)} \\ \\
\text{Therefore this is linearly independent}
\end{array}$