>[!summary]
A triangular matrix is a square matrix where entries above or below the main diagonal are 0.
>[!info]+ Read Time
**⏱ 1 min**
# Definition
A triangular matrix is a [[Square Matrix|square matrix]] where all entries either above or below the main [[Diagonal Matrix|diagonal]] are 0. An upper triangle, all entries below the diagonal are 0, while a lower triangle, all entries above the diagonal are 0. Formally generalized for $\mathbb{R}^n$ below.
$
\begin{array}{c}
\text{Upper Triangle}: \\
\begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
0 & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & a_{nn}
\end{bmatrix}
\\
\\
\text{Lower Triangle}: \\
\begin{bmatrix}
a_{11} & 0 & \cdots & 0 \\
a_{21} & a_{22} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{bmatrix}
\end{array}
$