Com # Definition Elementary matrices are denoted as $E$ are exactly 1 [[Elementary Row Operations (ERO)|operation]] done on an [[Identity Matrix|identity matrix]]. Reversing the operation will return the identity matrix. # Examples > [!example] Examples of elementary matrices > $ \text{ Row Swap } (R_1 \leftrightarrow R_2) \quad E_1 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} > $ > > $ \text{Row Scaling } (R_2 \to 5 R_2) \quad E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1 \end{bmatrix} > $ > $ \text{Row Addition } (R_2 \to R_2 + 3 R_1) \quad E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} > $ # Resources <iframe width="560" height="315" src="https://www.youtube.com/embed/vxB7bAJyL9c?si=Fpr4EuczvAddStoc" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" referrerpolicy="strict-origin-when-cross-origin" allowfullscreen></iframe>