> [!summary]
Dimensions of a matrix describe the height and length of a matrix.
>
**Key Equations:**
>
Dimension Notation:
$A_{m\times n}$
>[!info]+ Read Time
**⏱ 1 min**
# Definition
The dimension of a [[Matrix Notation|matrix]] is the number of rows (equations) by the number of columns (variables). Dimensions tell us how high and long a matrix is. Mathematically, the dimensions of a matrix $A$ are referred to as the number of $m$ rows by $n$ column, described below.
**$A_{m\times n}$ Matrix:**
$
[A]
=
\left[
\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n}\\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{array}
\right]
$
# Resources
<iframe width="560" height="315" src="https://www.youtube.com/embed/ilFJYjfKYjk?si=3QleLsBaLErw2KcF" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" referrerpolicy="strict-origin-when-cross-origin" allowfullscreen></iframe>