> [!summary] The diagonal matrix is a special matrix where any entries off the diagonal are zero. > **Key Equation:** > Diagonal Format: $D = \text{diag}(d_{1},d_{2},d_{3}\dots, d_{n})$ >[!info]+ Read Time **⏱ 1 min** # Definition A diagonal matrix is a [[Square Matrix|square matrix]] in which all the **entries off the main diagonal are zero**. In general, this diagonal matrix ($D$) is as follows, where $d_{n}$ can be any scalar number or zero. $ D = \begin{bmatrix} d_1 & 0 & 0 & \cdots & 0 \\ 0 & d_2 & 0 & \cdots & 0 \\ 0 & 0 & d_3 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & d_n \end{bmatrix} $ Sometimes its easier to state the values on the diagonal as $D = \text{diag}(d_{1},d_{2},d_{3}\dots, d_{n})$ # Examples > [!example] Matrix formed for $\text{diag}(4,-2,7)$ > $ \begin{bmatrix} 4 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 7 \end{bmatrix} > $ > [!example] What is the diagonal values for the given matrix > $ \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 9 \end{bmatrix} > $ From looking at the matrix, the diagonal values are $\text{diag}(1,5,3,9)$ # Resources <iframe width="560" height="315" src="https://www.youtube.com/embed/N5kRmvFXhGQ?si=gDlFzZ7eMZ2hH1Nn" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" referrerpolicy="strict-origin-when-cross-origin" allowfullscreen></iframe>