> [!summary]
A derivative is the best approximation of the rate of change at a point.
>
**Key Equations:**
>
Derivative:
$\frac{dy}{dx} = f'(x) = \displaystyle \lim_{ h \to 0 } \frac{f(x+h)-f(x)}{h}$
>[!info]+ Read Time
**⏱ 1 min**
# Definition
A derivative is the best constant approximation at a point in time. It measures how fast something is changing or the [[Instantaneous|instantaneous]] change. Mathematically, this is the slope of a [[Tangent Lines|tangent line]], defined below.
$
\frac{dy}{dx} = f'(x) = \displaystyle \lim_{ h \to 0 } \frac{f(x+h)-f(x)}{h}
$
> [!note]
To solve derivatives analytically, knowledge of [[Derivative Properties|derivatives rules]] are needed.
# Resources
<iframe width="560" height="315" src="https://www.youtube.com/embed/9vKqVkMQHKk?si=ySXzDAuUCa2S9S_k" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" referrerpolicy="strict-origin-when-cross-origin" allowfullscreen></iframe>
---
<!-- Light Mode Newsletter Embed -->
<div class="mm-form-light">
<iframe
src="https://updates.cyberleadhub.com/widget/form/Y0kpQVpjJQuxEfX59m17"
id="inline-Y0kpQVpjJQuxEfX59m17"
title="Join Math & Matter Newsletter (Light)"
data-height="900"
scrolling="no"
allowtransparency="true"
loading="lazy"
style="width:100%;height:350px;border:none;border-radius:10px;background:transparent;overflow:hidden"
></iframe>
</div>
<!-- Dark Mode Newsletter Embed -->
<div class="mm-form-dark">
<iframe
src="https://updates.cyberleadhub.com/widget/form/lbeDLm24VjuaFxhjccA1"
id="inline-lbeDLm24VjuaFxhjccA1"
title="Join Math & Matter Newsletter (Dark)"
data-height="900"
scrolling="no"
allowtransparency="true"
loading="lazy"
style="width:100%;height:350px;border:none;border-radius:10px;background:transparent;overflow:hidden"
></iframe>
</div>
<!-- Provider script (only once) -->
<script src="https://updates.cyberleadhub.com/js/form_embed.js"></script>