> [!summary]
L'Hôpital's rule is a way of solving limits of a specific indeterminate form, $\frac{0}{0}$ or $\frac{\infty}{\infty}$
>
**Key Equations:**
$\displaystyle \lim_{ x \to a } \frac{f (x)}{g (x)} = \displaystyle \lim_{ x \to a } \frac{f' (x)}{g' (x)} = \frac{f' (a)}{g (a)} \quad \text{if } g' (a)\neq 0$
>[!info]+ Read Time
**⏱ 3 mins**
# Definition
L'Hôpital's Rule is a way of solving limits that are in the form $\frac{0}{0}$ or $\frac{\infty}{\infty}$, an [[Indeterminate Forms|indeterminate form]]. This means a limit like $\displaystyle \lim_{ x \to a } \frac{f(x)}{g(x)}=\frac{0}{0} \space\text{or} =\frac{\infty}{\infty}$.
This rule states that given that $\frac{f(a)}{g(a)}$ are [[Indeterminate Forms|undefined]], then the limit is must be equal to the [[Derivative|derivative]] of the functions ($f(x),g(x)$), defined below.
$
\displaystyle \lim_{ x \to a } \frac{f(x)}{g(x)} = \displaystyle \lim_{ x \to a } \frac{f'(x)}{g'(x)} = \frac{f'(a)}{g(a)} \quad \text{if } g'(a)\neq 0
$
> [!note]
This rule [[Differentiable|differentiates]] the two functions separately (no quotient). As well, this rule doesn't guarantee that the [[Limits|limits]] of the [[Differentiable|differentiable]] are defined
## Proof
> [!warning] Assumptions
To show a simplified proof for L'Hospital's rule through [[Direct Proof|direct proof]] assume the following:
> - A [[Derivative|derivative]] is defined as $f'(x)=\displaystyle \lim_{ x\to a } \frac{f (x) - f (a)}{x-a}$
> - The [[Analytical Limits Rules|quotient limit rule]] states $\displaystyle \lim_{ n \to a } \frac{f(x)}{g(x)}=\frac{\displaystyle \lim_{ n \to a } f (x)}{\displaystyle \lim_{ n \to a } g (x)}$
> [!note]+
This proof is only for the case that $\displaystyle \lim_{ x \to a } \frac{f(x)}{g(x)}=\frac{0}{0}$, but is similar approach is done for the $\displaystyle \lim_{ x \to a } \frac{f(x)}{g(x)}=\frac{\infty}{\infty}$, which is not proven here. This proof avoids using the [[Epsilon-Delta Definition of a Limit|epsilon-delta definition of a limit]], for resources on that refer to [[L'Hôpital's Rule#Resources|resources]].
Prove that $\displaystyle \lim_{ x \to a } \frac{f(x)}{g(x)} = \displaystyle \lim_{ x \to a } \frac{f'(x)}{g'(x)} =\frac{f'(a)}{g'(a)}$ if $f(a)=g(a)=0$
$
\begin{array}{c}
\text{Given that} \\
\displaystyle \lim_{ x \to a } \frac{f(x)}{g(x)} \\
\\
\text{This is the same as saying} \\
\displaystyle \lim_{ x \to a } \frac{f(x)-0}{g(x)-0} \\
\\
\text{Since $f(a)=g(a)=0$, then} \\
\displaystyle \lim_{ x \to a } \frac{f(x)-0}{g(x)-0} = \displaystyle \lim_{ x \to a } \frac{f(x)-f(a)}{g(x)-g(a)} \\ \\
\text{Then you can divide both top and bottom by $x-a$, since it doesnt change the equation} \\
\displaystyle \lim_{ x \to a } \frac{f(x)-f(a)}{g(x)-g(a)} = \displaystyle \lim_{ x \to a } \frac{\frac{f(x)-f(a)}{x-a}}{\frac{g(x)-g(a)}{x-a}} = \frac{ \displaystyle \lim_{ x \to a } \frac{f(x)-f(a)}{x-a}}{ \displaystyle \lim_{ x \to a } \frac{g(x)-g(a)}{x-a}} = \frac{ \displaystyle \lim_{ x \to a } f'(x) }{\displaystyle \lim_{ x \to a } g'(x) }= \frac{f'(a)}{g'(a)}
\end{array}
$
# Resources
<iframe width="560" height="315" src="https://www.youtube.com/embed/AiQUe8M8dj8?si=UT8bKqyiZ7o48-Ee" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" referrerpolicy="strict-origin-when-cross-origin" allowfullscreen></iframe>
<iframe width="560" height="315" src="https://www.youtube.com/embed/tL13JxmyRLw?si=ygUl5jz3Hb3-DUFe" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" referrerpolicy="strict-origin-when-cross-origin" allowfullscreen></iframe>
Uses epsilon-delta proofing
---
> 🧪 Think this could help someone else? [Star Math & Matter on Github](https://github.com/rajeevphysics/Obsidian-MathMatter) to help more learners discover it.
---