> [!summary]
A value in indeterminate forms has no result. They cannot be used as the result of a function or expression.
>
> **Indeterminate Forms:**
>
| # | Indeterminate Form |
|---|--------------------------|
| 1 | $\dfrac{0}{0}$ |
| 2 | $0 \cdot \infty$ |
| 3 | $\infty - \infty$ |
| 4 | $0^0$ |
| 5 | $\dfrac{\infty}{\infty}$ |
| 6 | $\infty^0$ |
| 7 | $1^\infty$ |
>[!info]+ Read Time
**⏱ 2 mins**
# Definition
Indeterminate forms are special values that have no result. There is ambiguity in the solutions, and they are not valid mathematical results. Evaluating a limit that results in an indeterminate form cannot be used as a result
$
1. \quad \frac{0}{0}
$
> [!note]- Argument for 1.
Take the example $3 \times 2 = 6$, you can solve this for the value of 3, $3 = \frac{6}{2}$.
>
Now take the example $3\times 0 =0$. You cannot solve for 3 now, $3=\frac{0}{0}$. Moreover, take another example, $8\times 0 = 0$. Cannot solve this value either $8 =\frac{0}{0}$.
$
\begin{array}{c}
2. \\
\text{Rewrite $\frac{0}{0}$} \\
\frac{0}{0} = \frac{0\times 1}{0} = \frac{0}{0}\cdot \frac{1}{0} = 0 \times \infty\\ \\
3. \\
\text{Rewrite $\frac{0}{0}$} \\
\frac{0}{0} = \frac{1-1}{0} = \frac{1}{0} - \frac{1}{0} = \infty-\infty \\ \\
4. \\
\text{Rewrite $\frac{0}{0}$} \\
\frac{0}{0} = 0^0
\end{array}
$
> [!note]
$\frac{1}{0}$ is in [[Determinate Forms|determinate form]] and equals $\infty$.
If $\frac{0}{0}$ is indeterminate the rewritten equation off of the indeterminate form is also indeterminate.
$
\begin{array}{c}
5. \\
\text{Rewrite $0\cdot \infty$} \\
0 \cdot \infty = \frac{1}{\frac{1}{0}\cdot \infty} = \frac{\infty}{\infty} \\ \\
6. \\
\text{Rewrite $\frac{\infty}{\infty}$} \\
\frac{\infty}{\infty} = \infty^0 \\ \\
7. \\
1^\infty
\end{array}
$
> [!note]- Argument for 7.
Take an example like $\frac{4^2}{4^2}=\frac{16}{16}=1$ which is the same as saying $\left( \frac{4}{4} \right)^2 = 1$
>
Now take the example $\frac{4^{\infty}}{4^\infty}$. This is a [[Determinate Forms|determinate form]], which equals $\infty$.
So then $\frac{4^{\infty}}{4^\infty} = \frac{\infty}{\infty}$ and from 5. this is indeterminate.
# Resources
<iframe width="560" height="315" src="https://www.youtube.com/embed/8ikXpogtbKQ?si=TNpmIksv4DBDQ4vg" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" referrerpolicy="strict-origin-when-cross-origin" allowfullscreen></iframe>