> [!summary]
Values in determinate forms are special limit values that have a result.
>
**Determine Forms:**
>
>
| # | Form | Result |
| --- | ------------------ | ------------ |
| 1 | $\frac{L}{0^-}$ | $\pm \infty$ |
| 2 | $\frac{L}{0^+}$ | $\pm \infty$ |
| 3 | $\frac{L}{\infty}$ | $0$ |
| 4 | $\frac{0}{\infty}$ | $0$ |
| 5 | $\frac{\infty}L{}$ | $\infty$ |
| 6 | $\infty+\infty$ | $\infty$ |
| 7 | $L\cdot \infty$ | $\infty$ |
| 8 | $0^\infty$ | $0$ |
| 9 | $\infty^\infty$ | $\infty$ |
| 10 | $L^\infty$ | $\infty$ |
>[!info]+ Read Time
**⏱ 2 mins**
# Definition
Determinate forms are forms of expressions that tell you what the limit is without ambiguity. Therefore can be computed as a limit.
## Derivation
> [!warning] Assumptions
To show each special determinate form through a limit, assume the following:
> - A [[Limits|limit]] is in the form $\displaystyle\lim_{ x \to n } f(x)$
> - A limit is solved using [[Analytical Limits Rules|limit rules]]
> - $L$ is a [[Real Numbers|real number]] upset $0$ ($L\in \mathbb{R} \space \textbackslash \left\{ 0 \right\}$)
$
\begin{align*}
(1) & \displaystyle \lim_{ x \to 0^- } \frac{L}{x} &= \pm \infty \\
(2) & \displaystyle \lim_{ x \to 0^+ }\frac{L}{x} &= \pm \infty \\
(3)& \displaystyle \lim_{ x \to \infty }\frac{L}{x} &= 0 \\
(4)& \displaystyle \lim_{ x \to \infty }\frac{0}{x} &= 0 \\
(5)& \displaystyle \lim_{ x \to \infty }\frac{x}{L} &= \infty \\
(6) & \displaystyle \lim_{ x \to \infty }(x+x) =\displaystyle \lim_{ x \to \infty }(2x) &=\infty \\
(7) & \displaystyle \lim_{ x \to \infty }(L\cdot x) &= \infty\\
(8) & \displaystyle \lim_{ x \to \infty }\left( \frac{1}{x} \right)^x = \displaystyle \lim_{ x \to \infty } (0^x) &= 0 \\
(9) & \displaystyle \lim_{ x \to \infty }x^x &= \infty \\
(10) & \displaystyle \lim_{ x \to \infty }L^x &= \infty
\end{align*}
$
> [!note]
For (1) & (2) if:
> $
\begin{array}{c}
\text{If $L>0$}, \frac{L}{x} \to \infty \\
\text{If $L<0$}, \frac{L}{x} \to -\infty
\end{array}
> $