> [!summary]
This proof uses the definition of a derivative to prove the difference rule
>
**Key Result:**
$\frac{d}{dx}[f (x)-g (x)] = \frac{d}{dx}f (x)-\frac{d}{dx}g (x)$
>[!info]+ Read Time
**⏱ 1 min**
# Mathematical Proof
> [!warning] Assumptions
To prove the difference rule using [[Direct Proof|direct proof]] assume the following:
> - The definition of a [[Derivative|derivative]] is $\frac{dy}{dx} = f'(x) = \displaystyle \lim_{ h \to 0 } \frac{f(x+h)-f(x)}{h}$
Prove that $\frac{d}{dx}[f (x)-g (x)] = \frac{d}{dx}f (x)-\frac{d}{dx}g (x)$
$
\begin{array}{c}
\text{From the definition of a derivative:} \\ \\
\begin{align*}
\frac{d}{dx}[f (x)-g (x)] &=\displaystyle \lim_{ h \to 0 } \frac{[f (x+h)-g (x+h)]-[f (x)-g (x)]}{h} \\
&= \displaystyle \lim_{ h \to 0 } \frac{f (x+h)-f (x)-[g (x+h)-g (x)]}{h} \\
&= \displaystyle \lim_{ h \to 0 } \frac{f (x+h)-f (x)}{h}- \displaystyle \lim_{ h \to 0 } \frac{g (x+h)-g (x)}{h}
\end{align*} \\ \\
\text{Then by definition $\frac{d}{dx}[f (x)-g (x)] = \frac{d}{dx}f (x)-\frac{d}{dx}g (x)$}
\end{array}
$
---
<!-- Light Mode Newsletter Embed -->
<div class="mm-form-light">
<iframe
src="https://updates.cyberleadhub.com/widget/form/Y0kpQVpjJQuxEfX59m17"
id="inline-Y0kpQVpjJQuxEfX59m17"
title="Join Math & Matter Newsletter (Light)"
data-height="900"
scrolling="no"
allowtransparency="true"
loading="lazy"
style="width:100%;height:350px;border:none;border-radius:10px;background:transparent;overflow:hidden"
></iframe>
</div>
<!-- Dark Mode Newsletter Embed -->
<div class="mm-form-dark">
<iframe
src="https://updates.cyberleadhub.com/widget/form/lbeDLm24VjuaFxhjccA1"
id="inline-lbeDLm24VjuaFxhjccA1"
title="Join Math & Matter Newsletter (Dark)"
data-height="900"
scrolling="no"
allowtransparency="true"
loading="lazy"
style="width:100%;height:350px;border:none;border-radius:10px;background:transparent;overflow:hidden"
></iframe>
</div>
<!-- Provider script (only once) -->
<script src="https://updates.cyberleadhub.com/js/form_embed.js"></script>