> [!summary] This note shows the shortcuts for the derivative rules > **Key Table:** > > | Rule | Derivative Shortcut | | ---------------------- | ------------------------------------------------------------------------------------------------- | | Power Rule | $\frac{d}{dx }x^n = nx^{n-1}$ | | Sum/ Difference Rule | $\frac{d}{dx}[f (x)\pm g (x)] = \frac{d}{dx}f (x)\pm\frac{d}{dx}g (x)$ | | Constant Multiple Rule | $\frac{d}{dx}[f (x)-g (x)] = \frac{d}{dx}f (x)-\frac{d}{dx}g (x)$ | | Product Rule | $\frac{d}{dx}[f (x)\cdot g (x)] = f' (x) g (x)+f (x) g' (x)$ | | Chain Rule | $\frac{d}{dx}[C\cdot F (x)] = C\cdot F' (x)$ | | Quotient Rule | $\frac{d}{dx} \left[ \frac{f (x)}{g (x)} \right] = \frac{f' (x) g (x)-f (x) g' (x)}{[g (x)]^2}$ | >[!info]+ Read Time **⏱ 3 mins** > [!warning] Assumptions These are rules and proof of [[Derivative|derivatives]], so assume the following: > - The notation for a derivative of x is $\frac{d}{dx}(x)$ # Power Rule $ \frac{d}{dx }x^n = nx^{n-1} $ > [!info]- Proof ![[Proof of Derivative Power Rule]]. # Sum Rule $ \frac{d}{dx}[f(x)+g(x)] = \frac{d}{dx}f(x)+\frac{d}{dx}g(x) $ > [!info]- Proof ![[Proof of Derivative Sum Rule]] # Difference Rule $ \frac{d}{dx}[f(x)-g(x)] = \frac{d}{dx}f(x)-\frac{d}{dx}g(x) $ > [!info]- Proof ![[Proof of Derivative Difference Rule]] # Constant Multiple Rule Note that $C$ is a [[Real Numbers|real number]]. $ \frac{d}{dx}[C\cdot F(x)] = C\cdot F'(x) $ > [!info]- Proof ![[Proof of Derivative Constant Multiple Rule]] # Product Rule $ \frac{d}{dx}[f(x)\cdot g(x)] = f'(x)g(x)+f(x)g'(x) $ > [!info]- Proof ![[Proof of Derivative Product Rule]] # Chain Rule $ \frac{d}{dx}[f(g(x))] = f'(g(x))\cdot g(x) $ > [!info]- Proof ![[Proof of Derivative Chain Rule]] # Quotient Rule $ \frac{d}{dx} \left[ \frac{f(x)}{g(x)} \right] = \frac{f'(x)g(x)-f(x)g'(x)}{[g(x)]^2} $ > [!info]- Proof ![[Proof of Derivative Quotient Rule]] --- <!-- Light Mode Newsletter Embed --> <div class="mm-form-light"> <iframe src="https://updates.cyberleadhub.com/widget/form/Y0kpQVpjJQuxEfX59m17" id="inline-Y0kpQVpjJQuxEfX59m17" title="Join Math & Matter Newsletter (Light)" data-height="900" scrolling="no" allowtransparency="true" loading="lazy" style="width:100%;height:350px;border:none;border-radius:10px;background:transparent;overflow:hidden" ></iframe> </div> <!-- Dark Mode Newsletter Embed --> <div class="mm-form-dark"> <iframe src="https://updates.cyberleadhub.com/widget/form/lbeDLm24VjuaFxhjccA1" id="inline-lbeDLm24VjuaFxhjccA1" title="Join Math & Matter Newsletter (Dark)" data-height="900" scrolling="no" allowtransparency="true" loading="lazy" style="width:100%;height:350px;border:none;border-radius:10px;background:transparent;overflow:hidden" ></iframe> </div> <!-- Provider script (only once) --> <script src="https://updates.cyberleadhub.com/js/form_embed.js"></script>