> [!summary]
This proof uses the definition of an absolute value to prove the quotient rule
>
**Key Result:**
$\frac{|a|}{|b|}= |\frac{a}{b}|$ assuming that $b\neq 0$
# Mathematical Proof
> [!warning] Assumptions
To prove the absolute value multiplication rule by [[Proof by Cases|proof by cases]] assume the following:
> - The definition of the absolute value of a $\frac{|a|}{|b|}$ is:
> $
> | \frac{a}{b}| =
> \begin{cases}
> \frac{a}{b}, & \text{if } ab \geq 0 \\
> -\frac{a}{b}, & \text{if } ab < 0
> \end{cases}
> $
> - $b \neq 0$
Prove that $\frac{|a|}{|b|}= |\frac{a}{b}|$
$
\begin{array}{c} \\
\text{Case 1:} \quad a>0 , b>0: \\
\frac{a}{b} = |\frac{a}{b}| \quad\text{By definition } \\
\\
\text{Case 2:} \quad a>0, b<0: \\
-\frac{a}{b}= |\frac{a}{b}|\quad \text{By definition} \\ \\
\text{Case 3:} \quad a<0 , b<0: \\
\frac{-a}{-b}=\frac{a}{b}= |\frac{a}{b}| \quad \text{By definition}
\end{array}
$
# Resources
<iframe width="560" height="315" src="https://www.youtube.com/embed/0ozGYp6MXWY?si=qcY4fA4XRtKXiSeU" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" referrerpolicy="strict-origin-when-cross-origin" allowfullscreen></iframe>