> [!summary]
>This proof uses the definition of the absolute value to prove the multiplication rule
>
**Key Result:**
$|a||b| =|ab|$
>[!info]+ Read Time
**⏱ 1 min**
# Mathematical Proof
> [!warning] Assumptions
To prove the absolute value multiplication rule by [[Proof by Cases|proof by cases]] assume the following:
> - The definition of the absolute value of a $|a|\cdot|b|$ is:
> $
|ab| =
\begin{cases}
ab, & \text{if } ab \geq 0 \\
-ab, & \text{if } ab < 0
\end{cases}
> $
Prove that $|a|\cdot |b|=|ab|$
$
\begin{array}{c}
\text{Case 1}: a>0, b >0: \\
|a|\cdot|b| = a\cdot b = ab \\
\text{By definition of a absolute value, $a>0$ and $b>0$ so $ab>0$ therefore }\\
ab=|ab| \\
\\
\text{Case 2}: a<0 , b>0: \\
|a| \cdot |b| = -a\cdot b \quad \\
\text{By definition of a absolute value, $a<0$ and $b>0$ so $ab<0$ therefore }\\
-ab = |ab|\\ \\
\text{Case 3}: a<0,b<0:\\
|a|\cdot|b| = -a\cdot -b =ab| \\
\text{By definition of a absolute value, $a<0$ and $b<0$ so $ab>0$ therefore } \\
ab=|ab|
\end{array}
$
# Resources
<iframe width="560" height="315" src="https://www.youtube.com/embed/pmT4aAtwpfY?si=aZwOwJHZjQZYLCTk" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" referrerpolicy="strict-origin-when-cross-origin" allowfullscreen></iframe>
---
> 🧠 Enjoy this walkthrough? [Support Math & Matter](https://github.com/rajeevphysics/Obsidian-MathMatter) with a star and help others learn more easily.
---