> [!summary]
This proof uses proof by cases and definitions of an absolute value to prove the inequalities rule
>
**Key Result:**
$|x| \leq A \Rightarrow -A \leq x \leq A$
>
$|x| > A \Rightarrow x<-A \space\lor x>A$
>[!info]+ Read Time
**⏱ 2 mins**
# Mathematical Proof
> [!warning] Assumptions
To prove the absolute inequality rule by [[Proof by Cases|proof by cases]] for both directions, assume the following:
> - The definition of an absolute value is $
|x| =
\begin{cases}
x, & \text{if } x \geq 0 \\
-x, & \text{if } x < 0
\end{cases}
> $
> - A is a non-zero [[Real Numbers|real number]]
Prove that $|x| \leq A \Rightarrow -A \leq x \leq A$
$
\begin{array}{c}
\text{Case 1: $x \geq 0$} \\
\\
\text{By definition if $x \geq 0 \Rightarrow x$} \\
\text{Then if x < A and A > 0 and $-A \leq 0\leq x$ then by definition:}\\
-A \leq x\leq A \\
\\
\text{Case 2: $x < 0$}\\ \\
\text{By definition if $x<0 \Rightarrow -x$} \\
\text{Then if $-x <A\Rightarrow x>-A$ and $x<0<A$ then by definition:}\\
-A \leq x\leq A
\end{array}
$
Prove that $|x| > A \Rightarrow x<-A \space\lor x>A$
$
\begin{array}{c}
\text{Case 1: $x\geq 0$} \\
\\
\text{By definition if $x\geq 0 \Rightarrow x$} \\
\text{Then if $x>A$ by definition:} \\
x>A \\ \\
\text{Case 2: $x<0$} \\
\\
\text{By definiton if $x<0 \Rightarrow -x$} \\
\text{Then if $-x<A\Rightarrow x<-A$ so by definition:}\\
x<-A
\end{array}
$
# Resources
<iframe width="560" height="315" src="https://www.youtube.com/embed/X7GhczgUy7c?si=7BTmC4MrsjB099Zp" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share" referrerpolicy="strict-origin-when-cross-origin" allowfullscreen></iframe>
---
> 📚 Like this note? [Star the GitHub repo](https://github.com/rajeevphysics/Obsidian-MathMatter) to support the project and help others discover it!
---