> [!summary]
The note is a shortcut for the absolute values rules and serves as a hub for proofs of rules
> $
\begin{array}{|c|l|}
\hline
\textbf{Rule} & \textbf{Statement} \\
\hline
\text{Zero Property} & |x| = 0 \iff x = 0 \\
\hline
\text{Multiplication Rule} & |ab| = |a||b| \\
\hline
\text{Division Rule} & \left| \frac{a}{b} \right| = \frac{|a|}{|b|},\quad b \ne 0 \\
\hline
\text{Power Rule} & |x^n| = |x|^n \quad \text{(if } n \text{ even)} \\
\hline
\text{Identity with Square Root} & |x| = \sqrt{x^2} \\
\hline
\text{Triangle Inequality} & |a + b| \le |a| + |b| \\
\hline
\hline
\text{Inequalities Rule} & \begin{array}{c}
\text{If $|x| \leq A$ then:} \\
-A \leq x \leq A \\ \\
\text{If $|x| \geq A$ then:} \\
|x| \leq -A \space \lor |x| \geq A
\end{array}\\
\hline
\end{array}
> $
>[!info]+ Read Time
**⏱ 1 min**
## Product Rule
$
|a||b| = |ab|
$
> [!note]- Proof
> ![[Proof of the Absolute Value Product Rule]]
## Quotient Rule
$
\frac{|a|}{|b|} = \left| \frac{a}{b} \right| \quad (b \neq 0)
$
> [!note]- Proof
![[Proof of the Absolute Value Quotient Rule]]
## Power Rule
Note that this rule only works for $nth$ power as an [[Integers|integer]].
$
|a^n| = |a|^n \quad n \in \mathbb{Z^+}
$
> [!note]- Proof
![[Proof of the Absolute Value Power Rule]]
## Identity with Square Root
$
\sqrt{ x^2 } = |x|
$
> [!note]- Proof
![[Proof of the Absolute Identity with the Square Root Rule]]
## Triangle Inequality Rule
$
|a+b| \leq |a|+|b|
$
> [!note]- Proof
![[Proof of the Absolute Value Triangle Inequality]]
## Inequalities Rule
$
\begin{array}{c}
\text{If $|x| \leq A$ then:} \\
-A \leq x \leq A \\ \\
\text{If $|x| \geq A$ then:} \\
|x| \leq -A \space \lor |x| \geq A
\end{array}
$
> [!note]- Proof
![[Proof of the Absolute Inequalities Rule]]